Fighting MALARIA with Technology.

Introduction

Malaria is a disease caused by protozoa and transmitted by a mosquito. Estimates suggest it is the cause of 500 thousand deaths annually. The World Health Organization estimates that almost 3 billion people are at risk of Malaria and cited several challenges in their latest Malaria report for 2014. Among these challenges were the diagnostic tests deficiencies.

There are currently 4 approaches to diagnose Malaria: Clinical symptoms/history, Blood tests using microscopy, Rapid tests using a Dip stick and Molecular level tests. There are pros and cons for each of these with the dip stick test becoming popular for its relative speed and cost attributes.

HeuroLabs wanted to do something to help. They were interested in the ‘real world’ and how technology can and should make a difference for real problems in the physical world. They wanted to do things that will move the needle, can bring an order of magnitude or better improvements and contribute to humanity in a big way. This problem, given the mortality rate, the population at risk really got to them and it fits perfectly with their passion for helping people a

Hypothetical questions

HeuroLabs thought about the diagnosis challenge and asked themselves some questions:

What happens if a whole village needs to be tested? how long will it take? how accurate would the results be? Would this data, should it be digitized, improve our understanding of Malaria? What risks are there for the medical and support staff in the field while doing this?

There were indeed many questions, and they came to the conclusion that in a crisis situation when there is more than a handful of people to diagnose and more generally when dealing with epidemics there must be a severe challenge in carrying out the necessary tasks at all, let alone efficiently.

HeuroLabs team decided that their contribution will be in using their machine learning and computer vision expertise to build a comprehensive system that can deal with both clinical symptoms and blood sample image. They envisioned that they will have a 2-step process where clinical symptoms will signal whether a blood sample should be taken and the system can improve over time through feedback and fusion of the data from the different steps.

Building CellMates:

HeuroLabs team started collecting the necessary data including cases that had similar symptoms but actually negative diagnosis. For example, sometimes a person presents with symptoms that look like Malaria but turns out to be Ebola. They also constructed a dataset of blood sample imagery for both healthy and infected cells. The images were in PNG formats but could have been DCIM or other common formats used in microscopy. The dataset construction is probably one of the hardest, if not the hardest, part. They needed to apply natural language algorithms to normalize the clinical symptoms. They also needed to apply a set of transformations in order to prepare the data for their algorithms. They evaluated different machine learning models including neural and geometrical machine learning models and found the geometrical models with a kernel transformation to be more reliable. They decided that a non-linear kernel model in a low order polynomial was the best choice. This model was 100% accurate in the positive case and 80% accurate in the negative case. What this means is that 2 times out of 10 they may draw a blood sample unnecessarily, which they believe to be an acceptable cost. They need to expose the system to more data in order to verify the performance over a large sample. 

In parallel, HeuroLabs team worked on the blood sample images. They evaluated different approaches given what they had built so far already for their platform’s sensory system. This problem is much more specialized. The quality, the resolution and color gradients varied greatly. They thought that they can go even further than their initial goals of “just” classifying the infection: HeuroLabs team can make it faster, better and easier to train new technicians and test them and they can enable collaboration between machines and humans when it comes to microscopy images. They built a component that can be used to view and label the images semi-automatically and can be used by universities and remote professionals to collaborate remotely.

HeuroLabs team then focused on the classification of the cells. Based on their learning from the cell detection and segmentation phase any ‘never before seen’ image is segmented to detect the cells. Their system then assigns each cell a class of ‘Infected/Not-infected’. This means they can calculate all kind of interesting statistics like infection rate for example.

You can see the image below, the rectangles are automatically drawn to note which cells are infected.

Malaria-AutoLabeled

Both of the diagnosis support system, clinical or visual, run within 100s of milliseconds. This is the kind of impact they were looking to make and they believe it is the kind of impact that is needed to address large outbreaks or, worse, epidemics.

How can this work in the field?

There are 3 distinct use cases that are excellent applications for CellMates:

  1. University/Training: Using their technology, they can train and assess more professionals faster.
  2. In-lab Microscopy: They believe an IoT Microscope would be a great use case for their platform.
  3. Mobile Microscopy: Mobile microscopy is low cost, portable devices that can be plugged into networks or tablets. Relatively cheap lightweight microscopes already exist and they believe that in general, the optics to support even smaller and more economic mobile microscope are also available. This is the use case that can make the difference and tip the scale in epidemics and usher in a new way to response especially in high-risk of contagious infections.

Deploying and Using CellMates:

CellMates-Annotate

CellMates – Annotation mode can be used for training and testing students.

CellMates-Diagnosis can be connected to in-lab or in-field microscopes

CellMates-Diagnosis can be connected to in-lab or in-field microscopes

CellMates are available for Linux based systems, including Android. This makes it ready to integrate with any of the available mobile microscopy solutions. It works both online and offline meaning it can be taken into rural villages to support the professionals in the field.

HeuroLabs are offering CellMates free of charge to underfunded non-profits, and very poor nations. They would be honored and delighted to support these teams in their fight for life.

For other types of users, a flat subscription is possible with unlimited installations as well as per embedded device licensing.

What’s next?

HeuroLabs CellMates’ work is now integrated into our platform and is available through their APIs. They are looking to partner with organizations focused on Malaria and other diseases. They are also looking to work with optics and microscope manufactures to realize a complete solution that can make a difference.

Malaria has 5 different sub-types, and we would our system to be even more specific in the diagnosis. For that, they need to get more data points and images.

They have already started their fight against Epilepsy and Cancer. Stay tuned for good news.

Want to help heurolabs?

You can help us in different ways, including providing data and other means of support. You can help us by promoting and morally supporting this work which will hopefully inspire more technology companies to work on harder and more impactful problems.

To discuss more, please write to us at together@heurolabs.com.

Concluding remarks:

There are a lot of challenges that we as a human must face and surmount. Our planet, our societies, and our individual well-being are facing new kinds of stress tests. Some of these challenges are really hard but they are the ones that can tip the scale and make the difference for generations to come. Even small startups can contribute to this end. Let ‘workarounds’ not be our goals and instead let us try to solve these grand challenges. We are committed to continuously expand the breadth and depth of our platform’s sensory and reasoning capabilities to help people live better and happier.

The video:

You can watch the video HeuroLabs made about CellMates here:

amardeep kaushal

Blogger, Marketer & Data Analyst.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.